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MARGIN BACKTESTING
Christophe Hurlin and Christophe Pérignon*

This paper presents a validation framework for collateral requirements or
margins on a derivatives exchange. It can be used by investors, risk managers,
and regulators to check the accuracy of a margining system. The statistical
tests presented in this study are based either on the number, frequency,
magnitude, and timing of margin exceedances, which are defined as situations
in which the trading loss of a market participant exceeds his or her margin.
We show that these validation tests can be implemented at the individual level
or at the global exchange level.

What makes derivatives exchanges so special is the extremely low default
risk that market participants are exposed to. Collateral requirements or
margins are the major tools to protect derivatives users against the default

of their counterparties. The challenge faced by derivative exchanges is to set margins
high enough to mitigate default risk but not so high as to shy traders away and
damage liquidity. The goal of this paper is to design a methodological framework
allowing risk managers and regulators to check the validity of the margins charged
to derivatives users. It consists of a series of diagnostic tools allowing one to detect
misspecified models that lead to margins that are either excessively conservative
or lenient. Checking the validity of a margining system is particularly important
nowadays as more and more over-the counter (OTC) derivatives products are
migrating to clearing platforms (Duffie and Zhu 2010).1

There are two types of margining systems used in practice: the Standard
Portfolio Analysis of Risk (hereafter SPAN) system and the Value-at-Risk (hereafter
VaR) model. Both margining systems consider a series of scenarios representing
potential one-day ahead changes in the underlying assets’ price and volatility and

1. The clearing activity consists in confirming, matching, and settling all trades on an exchange. In
order to reduce the risk of non-performance, exchange-traded derivatives are guaranteed against
counterparty failure by a central counterparty clearing house. On most derivatives exchanges, only
a subset of market participants (i.e., the clearing members) can directly trade with the clearing house
whereas all non-clearing member participants have to trade through a designated clearing member.
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generate simulated distributions of potential profit-and-loss (hereafter P&L) for
derivatives users. Under SPAN, the system selects for each position the largest
loss across all considered scenarios, combines financial instruments within the same
underlying asset, and total margin is given by the sum of the risk of all underlying
assets less some diversification adjustments (CFTC 2001; Chicago Mercantile
Exchange 2009). Differently, VaR margins are set such that the probability of the
loss on the entire derivatives portfolio exceeding the margin is equal to a pre-specified
level, such as 1% (Knott and Mills 2002; Cruz Lopez, Harris, and Pérignon 2011).

On a regular basis, the risk-management department of the clearing-house
and the regulatory agencies check the validity of the margining system. In particular,
they make sure that the hypothetical shocks used in the scenarios are extreme
enough and that the estimation of the derivative prices is reliable. Of particular
concern is a situation in which margins are set at too low a level. In this case, a
default by a clearing member following a big trading loss would lead to a massive
shortfall, which may propagate default within the clearing system (Jones and Pérignon
2012).

While the performance of the SPAN system has been investigated in a number
of papers (Kupiec 1994; Kupiec and White 1996; Eldor, Hauser, and Yaari 2011),
VaR margins have not to our knowledge been investigated in the academic literature.
This increasingly-popular modeling approach offers several advantages though. First,
as it is based on a quantile, it allows derivatives exchanges to pick the level of tail
risk that best fits with their risk tolerance. A second advantage is that quantile-
based margins are less sensitive to simulation design than maximum-based margins,
such as SPAN margins. Most importantly for this study, quantile-based margins
can be validated ex-post using formal backtesting methodologies. For instance, as
an α% quantile is by definition exceeded α% of the time, one can check whether
in reality α% VaR margins are indeed exceeded α% of the time.

Compared to market risk VaR (Jorion 2007; Christoffersen 2009a), which is
used by banks to monitor their trading risk and compute capital requirements, the
estimation of VaR margin is much simpler. In general, the quantile of the return at
time t cannot be estimated without making some strong assumptions about the
underlying distribution. Specifically, since there is only one return observation on
each date, it is usually assumed that the returns are independently and identically
distributed over time. Under these assumptions, VaR can be estimated from the
historical path of past returns. In the context of VaR margin; however, the situation
is quite different because P&L observations are simulated at time t. This is an ideal
situation from an econometric point of view because the quantile of the P&L
distribution can be directly estimated without making any assumptions regarding its
behavior over time.

Our main contribution to the literature on derivatives margins is to present a
backtesting framework for derivatives margins. It consists of a series of hypotheses
that must be validated by a well-functioning margin model. Then, we propose a
series of statistical tests that aim to test these hypotheses in order to detect
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misspecified margining models. We show that these validation tests can be
implemented either at the indivual investor level or at the global exchange level. In
this framework, not only can we find out whether a model is misspecified but we
can also unmask the reasons of rejection of a misspecified model. Finally, in order
to ease the implementation of the backtesting methodologies presented in this paper,
we created a website on which users can freely upload their margins and P&L
data and run the associated computer codes (www.RunMyCode.org).

The outline of the paper is the following. In Section I, we discuss how to
estimate VaR margins and present the main testable hypotheses. In Section II, we
show how to test these hypotheses in order to validate or invalidate a given margining
model. We present in Section III some statistical test that aim to validate the margining
model at the exchange level. Section IV summarizes and concludes our paper.

I. MARGIN ESTIMATION AND TESTABLE HYPOTHESES

A. Margin Estimation

For retail investors, margins are typically set at the contract level (e.g., $1,000
for any long or short position in a given futures contract). Depending on the expected
volatility, the derivatives exchange can adjust the level of the margin, as shown by
Brunnermeier and Pedersen (2009, Figure 1) for the S&P 500 futures. Differently,
for large market participants such as clearing members, margins are computed at
the portfolio level in order to account for diversification effects and are adjusted
daily. The VaR margin Bi  is set such that there is a probability α that the loss on the
derivative position exceeds the margin:

where Vi denotes the P&L of investor i, and α is called the coverage rate. Let ωi, t–1 be
the vector of positions of clearing member i at the end of day t–1:

where D is the number of derivatives contracts (futures and options) traded on this
exchange and i = 1, ..., N. To arrive at a margin for this portfolio, the clearing house
considers a series of S scenarios representing potential one-day ahead changes in
the level and volatility of the underlying assets. For each scenario, the value of the
portfolio is recomputed, or marked-to-model, using futures and option pricing
formulas, and the associated hypothetical P&L is computed:

 

i ,t−1 
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
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 (2)

, , 1Pr ( )i t i t tV B α α
−

⎡ ⎤<− =⎢ ⎥⎣ ⎦
(1)



Review of Futures Markets182

Given the simulated path               , the VaR margin for clearing member i is
given by:

The clearing house will proceed in the same way for the N – 1 other clearing
members and only those who will be able to pile up this amount of collateral on their
margin accounts will be allowed to trade on the next day.

B. Backtesting VaR Margin

Traditionally the quality of the forecast of an economic variable is assessed by
comparing its ex-post realization with the ex-ante forecast value. The comparison
of the various forecast models is thus generally made by using a criterion such as
the Mean Squared Error criterion or standard information criteria (AIC and BIC).
However, this approach is not suitable for VaR margin forecasts because the true
quantile of the P&L distribution is not observable. That is why VaR assessment is
generally based on the concept of margin exceedance (also called hit, violation, or
exception).

For a given clearing member i, a margin exceedance is said to occur if the ex-
post realization of the P&L at time  t, Vi,t, is more negative than the ex-ante VaR
margin forecast. Let It (α)  be a binary variable associated with an α% VaR margin
at time t (we omit the index i for simplicity):

As stressed by by Christoffersen (1998, 2009b), VaR forecasts are valid if and
only if the violation process It (α) satisfies the following two hypotheses:

• The Unconditional Coverage (hereafter UC) hypothesis: The probability
of an ex-post return exceeding the VaR forecast must be equal to the α
coverage rate:

• The Independence (hereafter IND) hypothesis:  VaR margin violations
observed at two different dates for the same coverage rate must be

(3)
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S ,100 .  

(5)I t 
1 if Vi,t  −Bi, t|t−1

0 otherwise
.  

(6) PrIt  1  EIt  .  
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distributed independently. Formally, the variable It (α) associated with a
margin exceedance at time t for an α% coverage rate should be
independent of the variables It–k (α),    k ≠ 0. In other words, past VaR
violations should not be informative about current and future violations.
The UC hypothesis is quite intuitive. Indeed, if the frequency of violations

observed over T  days is significantly lower (respectively higher) than the coverage
rate α , then risk is overestimated (respectively underestimated). However, the UC
hypothesis sheds no light on the possible dependence of margin exceedances.
Therefore, the independence property of violations is an essential one, because it is
related to the ability of a VaR margin model to accurately model the higher-order
dynamics of the P&L. In fact, a model that does not satisfy the independence
property can lead to clusterings of margin exceedances even if it has the correct
average number of violations. Consequently, there must be no dependence in the
violations variable, whatever the coverage rate considered.

When the UC and IND hypotheses are simultaneously valid, VaR forecasts
are said to have a correct Conditional Coverage (hereafter CC), and the VaR violation
process is a martingale difference with:

This last property is at the core of most of the validation tests for VaR models
(Christoffersen 1998; Engle and Manganelli 2004; Berkowitz, Christoffersen, and
Pelletier 2011). It is worth noting that equation (CC) implies that the violation It (α)
has Bernoulli distribution with a success probability equal to α :

II. TESTS OF MARGIN ACCURACY

A. Frequency of Margin Exceedances

A first way of testing margin accuracy is to test the number or the frequency
of margin exceedances. Thus the null hypothesis corresponds to equation (6):

A first statistical test, called the Z-test, is based on a normal approximation and
the assumption of independence. Consider a sequence {It (α)}   of T margin
exceedances associated to VaR (α% ) margins and denote by H the total number
of exeedances or hits, H =          It  (α). If we assume that the variables It  (α) are
i.i.d., then under the null of  UC, the total number of hits has a Binomial distribution:

∀

(7) E I t −  |  t−1  0.  

(8) 
I t are i.i.d. Bernoulli.  

(9) H0 ,UC : EI t  .  

T
t 1=

∑ =

T

t 1

 H  BT, (10)
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with E(H) = αT and V (H) = α (1- α) T. For a large T sample the Binomial distribution
can be approximated by a normal distributon and a simple Z-test statistic can be
defined as:

Alternatively, Kupiec (1995) and Christoffersen (1998) propose a Likelihood
Ratio (hereafter LR) test based on the process of VaR margin exceedances It (α).
Under  H0, the LR statistic is defined as:

Under the null (9), the LRUC  statistic converges to a chi-square distribution
with two degrees of freedom. The intuition for the LR test is the same as for the Z
statistics. The null of UC is not rejected if the empirical frequency of VaR margin
exceedances H/T is close enough to the coverage rate α. Jorion (2007) reports
some non-rejection regions for the  LRUC  test. For a 5% nominal size and sample
size T = 250, the UC assumption is not rejected if the total number of VaR(1%)
violations is strictly smaller than 7. If the sample size is equal to 500, the total
number of exceedances must strictly range between 1 and 11.

B. Frequency and Severity of Margin Exceedances

A key limitation of the previous approach is that it is unable to distinguish
between a situation in which losses are below but close to the margin and a situation
in which losses are considerably below the margin. Colletaz, Hurlin, and Pérignon
(2012) propose a backtesting methodology that is based on the number and the
severity of VaR exceptions. Their approach exploits the concept of super exception,
which is defined as a loss greater than a super VaR margin Bi, t|t–1 (α′) whereas the
coverage probability α′ is much smaller than α (e.g., α = 1% and α′ = 0.2%). As in
Section I.B, we define a hit variable associated with Bi, t|t–1 (α′):

The defining feature of their approach is to account for both the frequency
and the magnitude of VaR margin exceedances. The intuition is the following. If
the frequency of super exceptions is abnormally high, this means that the magnitude
of the losses with respect to Bi, t|t–1 (α)  is too large. For both VaR margin exceptions
and super exceptions, they propose to use a standard backtesting procedure. Consider

 
Z  H − T

1 − T
≈ N0, 1.  (11)

(12)
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T−H H
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d
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0 otherwise
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a time series of T VaR margin forecasts for an α (respectively α′) coverage rate
and let H (respectively  H′) be the number of associated VaR margin violations:

Colletaz, Hurlin and Pérignon (2012) propose a new tool, called the Risk Map,
which graphically summarizes all information about the performance of a VaR model.
It is based on a joint test of the number of VaR exceptions and VaR super exceptions:

The corresponding test statistic consists in a multivariate unconditional coverage
test. This test is based on three indicator variables:

The {Ji,t}    are Bernoulli random variables equal to one with probability 1 – α,
α – α′, and  α′, respectively. Given these definitions, we can test the joint hypothesis
(15) using a LR test. Let us denote Hi =              Jit , for i = 0, 1, 2, the count variable
associated with each of the Bernoulli variables. The multivariate unconditional
coverage test is an LR test that the empirical exception frequencies significantly
deviate from the theoretical ones. Formally, it is given by:

A Risk Map can be constructed based on the rejection zones for different
confidence levels (Figure 1). Note that the cells below the diagonal are not colored
as they correspond to situations in which the number of super exceptions exceeds
the number of exceptions, which is of course impossible. If the (H, H′) pair
corresponds to a light gray cell, we conclude that we cannot reject the null hypothesis
E [It (α)] = α  and  E[It (α′)] = α′ at the 95% confidence level. If (H, H′) falls in the
gray zone, we can reject the null at the 95% but not at the 99% confidence level.

(14)
 

H  ∑
t1

T

I t  H′ ∑
t1

T

It′ .  

 H0,MUC : EI t   and EIt′    ′.  (15)

(18)

(17)

(16) J0 ,t  1 − J1,t − J2, t  1 − I t

J1 ,t  It − I t ′  
1 if − Bi, t|t−1 ′  Vi, t  −Bi,t |t−1

0 otherwise
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Finally, a dark gray cell implies that we can reject the null hypothesis at the 99%
confidence level.

C. Independence of Margin Exceedances

The UC property does not give any information about the temporal independence
of VaR margin exceedances. However, generating margin exceedances that are
temporally independent is an important property for a margining system to have
since it suggests that the margin immediately reflects new information. A margining
system that violates this property leads to clusters of margin exceedances.2

It is important to note that these two VaR margin properties are independent
one from the other. At this point, if a VaR margin does not satisfy either one of
these two hypotheses, it must be considered as not valid. For example, satisfying
the hypothesis of unconditional coverage does not compensate for the possible
existence of violations clusters nor the noncompliance with the independence

Figure 1. Backtesting VaR Margins with the Risk Map.

Notes: This figure displays a Risk Map based on the p-value of a multivariate uncondi-
tional coverage tests, LRMUC(α, α′) for different numbers of VaR margin exceptions (H)
and VaR margin super exceptions (H′). Parameter values are α=%, α′=0.2%, and T=500.

2.  Berkowitz and O’Brien (2002) show that the VaR models used by six large U.S. commercial banks
(1) tend to be very conservative, at least when financial markets are not under stress and (2) lead to
clusters of VaR exceedances.  This second result indicates that risk models fail to forecast volatility
changes.
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hypothesis. On the contrary, there is CC when the VaR margin satisfies both the
UC and IND hypotheses.

1. LR Approach

Christoffersen (1998) proposes an LR test based on the assumption that the
process of VaR margin exceedances It (α)  is modeled with the following matrix of
transition probabilities:

where πij = Pr[It (α) = j | It –1 (α) = i], that is, probability of being in state j at time
t conditioning on being in state i at time t – 1. Under the null of independence, we
have π01 = π11 = β   and:

where β  denotes a denotes a margin exceedance probability, which can be different
from the coverage rate α. What these transition probabilities imply is that the
probability of experiencing a margin exceedance in the current period depends on
the occurrence or not of a margin exceedance in the previous period. The estimated
VaR margin exceedance probability is the empirical frequency of violations, H/T.
Under the alternative, no restriction is imposed on the  Π  matrix. The corresponding
LR statistic, denoted LRIND  is defined by:

where nij denotes the number of times we have It (α) = j and It –1(α) = i, and:

Finally, it is also possible to test the CC assumption for VaR margins. Under
CC:

and then:

(20) 
1− 01 01

1− 11 11
 

(21)H0 ,IND :  
1 −  

1 −  
 

(22)

 
LRIND  −2 ln 1 − H

T
T−H H

T
H

 2 ln1 − 01n 0001
n 011 − 11 n 1011

n 11 
T→

d
 21  

(23)
 01  n01

n0 0  n01

11  n11
n1 0  n11

.  

 

H0 ,CC :  
1 −  

1 −  
 (24)
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The corresponding LR statistic, denoted  LRCC, is defined by the sum of the
LRUC and  LRIND statistics. Under the null of CC, it satisfies:

2. Regression-based Tests

Engle and Manganelli (2004) suggest another approach based on a linear
regression model. This model links current margin exceedances to past exceedances
and/or past information. Let Hit (α) = It (α) – α  be the demeaned process associated
with It (α):

Consider the following linear regression model:

where the zt–k variables belong to the information set Ωt–1. For example, one can
use lagged P&L, squared past P&L, past margins, and so on. Whatever the chosen
specification, the null hypothesis test of conditional efficiency corresponds to testing
the joint nullity of all the regression coefficients:

The independence hypothesis implies that β k  and γk  coefficients are equal to
zero whereas the unconditional coverage hypothesis is verified when δ is null. Indeed,
under the null hypothesis, E [Hitt (α)] = E (εt)  = 0, which implies by definition that
Pr [It (α) = 1] = E [It (α)] = α.

Denote the vector Ψ = (δ  β1... βΚ γ1  ...γΚ)′ of the 2K + 1 parameters in this
model and Z the matrix of explanatory variables of model (28), the Wald statistic,
denoted DQCC , in association with the test of CC hypothesis then verifies:

(25)
 LRCC  −2 ln 1 − T−HH

 2 ln1 − 01 n 00
01

n 01 1 − 11n 10
11

n 11 
T→

d
 22

 

 

(26)
 

LRCC  LRUC  LRIND
T→

d
 22.  

(27)

 

Hitt 
1 −  if Vi ,t  −Bi,t |t−1

− otherwise
.  

(28)
 

Hitt   ∑
k1

K

k Hit t−k   ∑
k1

K

k zt−k  t  

(29)H0 ,CC :   k  k  0, ∀k  1, .. ,K .  

(30)
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where     is the OLS estimate of  Ψ. Notice that one can also test the UC hypothesis
by testing H0,UC : δ = 0 or test the IND hypothesis with H0, IND : βk = γk = 0. A natural
extension of the test of Engle and Manganelli (2004) consists in considering a (probit
or logit) binary model linking current violations to past ones (Patton 2002; Dumitrescu,
Hurlin, and Pham 2012).

3. Autocorrelation Test

Rather than using a regression model, Berkowitz, Christoffersen, and Pelletier
(2011) test directly the martingale difference assumption. As under CC, the VaR
margin exceedance process Hitt (α) is a martingale difference; it should be
uncorrelated. A natural test is the univariate Ljung-Box test of H0, CC : r1 = ... = rK =
0 where rk  denotes the kth  autocorrelation:

where      is the empirical autocorrelation of order k of the Hit (α) process.

D. Duration between Margin Exceedances

The UC, IND, and CC hypotheses also have some implications on the time
between two consecutive VaR margin exceedances. Following Christoffersen and
Pelletier (2004), we denote by dv the duration between two consecutive VaR margin
violations:

where tv denotes the date of the vth exceedance. Under CC hypothesis, the duration
process di has a probability density function given by:

This distribution characterizes the memory-free property of the VaR margin
violation process It (α), which means that the probability of observing a violation
today does not depend on the number of days that have elapsed since the last
violation. Note that E (dv) = 1/α since the CC hypothesis implies an average duration
between two margin exceedances equals to 1/α. The general idea of the test consists
in specifying a distribution that nests equation (33), so that the memoryless property
can be tested through parameter restriction. In this line, Christoffersen and Pelletier
(2004) use under the null hypothesis the exponential distribution, which is the
continuous analogue of the probability density function in equation (33):

(31)
 

LBK  TT  2∑
k1

K r k
2

T − k T→

d
 2K  

kr̂

(32)
 dv  t v − t v−1  

(33) fdv ;  1 −  d v−1 dv ∈ N∗ .  

Ψ̂

(34)
 gdv;   exp−dv .  



Review of Futures Markets190

Under the alternative hypothesis, Christoffersen and Pelletier (2004) postulate
a Weibull distribution for the duration variable:

As the exponential distribution corresponds to a Weibull distribution with b = 1,
the test for IND is:

and for CC is:

Christoffersen and Pelletier (2004) propose the corresponding LR test (see also
Haas 2005), and Candelon et al. (2011) derive a GMM duration-based test.

III. TESTS OF GLOBAL VALIDITY

To the best of our knowledge, all empirical studies on VaR backtesting considers
individual banks in isolation (Berkowitz and O’Brien 2002; Pérignon and Smith
2010; Berkowitz et al. 2011). The reason for doing so is that financial institutions
use different proprietary risk models, which needs to be tested separately. Differently
on a derivatives exchange, the margins of all market participants are computed
using the same model developed by the clearing house. Hence, this model can be
tested globally using information from all market participants, which helps in detecting
misspecified models.

A. Definitions

Let us denote Ii,t (α) the VaR margin exceedance for clearing member i at
time t. We define the Global Unconditional Coverage (hereafter GUC) hypothesis
as a situation where the probability of an ex-post loss exceeds the VaR margin
forecast is equal to the α coverage rate for all clearing members:

The GUC means that the frequency of VaR margin exceedances is accurate
for all clearing members. Note that it is important not to pool the N margin exceedance
processes. Indeed, an under-estimation of the margin for member i could be offset
by an over-estimation of the margin for another member j. Thus, the GUC hypothesis
requires the UC hypothesis to be valid for all clearing members.

We proceed in a similar way for the Global Independence (hereafter GIND)
hypothesis. Under GIND, the VaR margin exceedances observed for all the members
at two different dates are independent; that is, Ii,t (α) is independent from Ii,t–k(α),

(35) hdv; a,b  abbdv
b−1 exp −adv  b .  

(36) H0 ,IND : b  1  

(37)H0 ,CC : b  1, a    

(38) H0 ,GUC : EI i,t    ∀i  1,. . , N.  
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     . Furthermore,  Ii,t (α) is also independent from past (and future) VaR margin
exceedances of other members Ij,t–k (α),             and  j ≠ i. Notice that we allow for
contemporaneous dependencies between VaR margin exceedances of different
members.

Finally, the global conditional coverage (GCC) hypothesis corresponds to a
case where the N margin exceedance processes are a martingale difference:

where Ωt–1 denotes the information set available at time t – 1 for all the members,
including past values of VaR margin and VaR margin exceedances of other members
j .

A natural test for the GUC hypothesis consists in testing the null (38) against
the following alternative:

where dim(S) = N1 satisfies 1 < N1 ≤  N and dim(   ) = N2 with N1 + N2 = N. Under
this alternative, the margin of at least one member does not satisfy the UC hypothesis.
Similarly, a natural test of GCC is based on the null (GCC) against the alternative:

B. Testing Strategies

Let us consider an individual test statistic of the UC (or CC) hypothesis, denoted
Xi  specific to clearing member i. For instance, for the UC test, this statistic
corresponds to the LRUC  statistic or the duration-based LRUC  statistic. For the CC
test, this statistic corresponds to the LRCC  statistic, DQ statistic, or duration-based
statistic LRCC. Whatever the chosen test, the individual statistic for member i can
be expressed as a non-linear function of the sequence of the margin exceedances
of this member, that is, Xi = g (Ii,1(α), ..., Ii,T (α)). To test the GUC or GCC null
hypothesis, we follow Im, Pesaran, and Shin (2003) and use the average of the
individual statistics:

If we assume  margin exceedances are cross-sectionally independent, that is,
Ii,t are independent of Ij,s for i ≠ j and all (t,s), the        statistic converges to a normal

0≠∀k
0≠∀k

(39) H0,GCC : E Ii, t|  t−1   ∀i  1,. . , N  

(41)

(40) H1 ,GUC : EI i,t  ≠  for i ∈ S

EI i,t    for i ∈ S

 

 

(42)

(43)

 H1,GCC : E Ii, t|  t−1 ≠  for i ∈ S

E Ii, t|  t−1   for i ∈ S .

 

 

S

(44)
 

X N  1
N ∑

i1

N

Xi  1
N ∑

i1

N

gIi ,1, . . , Ii, T.  

NX
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distribution when T and N grow large. The intuition is as follows. When T tends to
infinity, each individual statistic Xi converges to the same distribution. For instance,
the LRUC  statistic converges to a chi-square distribution. Under the cross-sectional
independence assumption, the individual statistics Xi = g(Ii, 1 (α), ..., Ii, T (α)) are also
independent. Thus, the individual statistics Xi are independently and identically
distributed. The central limit theorem is then sufficient to show that the cross-
sectional average mean      converges to a normal distribution when N  tends to
infinity:3

An alternative testing strategy consists in combining the p-values associated
with the N individual tests. A Fisher type test is then defined by:

For any statistic Xi , such as LRUC , LRCC , or DQCC , its p-value is uniformly
distributed over [0, 1]. Under the assumption of cross-sectional independence,         has
a chi-square distribution with 2N degrees of freedom. For large N samples, we can
use a standardized statistic:

IV. CONCLUSION

Having a well-functioning margining system is a prerequisite for any derivatives
exchange. It allows the exchange to closely monitor tail risk and make the system
resilient. In this paper, we have provided a backtesting framework allowing investors,
risk managers and regulators to validate margin models. The statistical tests we
have presented capture different facets of the margin model performance including
frequency, timing, and magnitude of margin exceedances. Rather than being
substitutes, the different statistical tests appear to complement each other and can
be used to identify the source(s) of model misspecification.

The quest for the ideal margining system is still ongoing. Market participants
and regulators want collateral requirements to be less procyclical in order to prevent
liquidity spiral (Brunnermeier and Pedersen 2009). What we show in this paper is a

NX

(45)
 

X N
N ,T→

d
 N0, 1.  

(46)

 

P XN  −2∑
i1

N

logpi 
T→

d
 22N.  

NXP

(47)ZX N  −
∑ i1

N logpi   N
N N ,T→

d
 N0,1.  

3. When the contemporaneous exceedances Ii,t   and  Ij,t    are correlated, the distribution of the average
statistic         can be estimated by bootstrap.NX
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second property that ideal margins should have: Their accuracy should be testable
ex-post. Indeed, even the most advanced risk measures are of little help if they
cannot be systematically validated.
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